198 research outputs found

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    Continuity of Landsat Obersvations: Short Term Considerations

    Get PDF
    As of writing in mid-2010, both Landsat-5 and -7 continue to function, with sufficient fuel to enable data collection until the launch of the Landsat Data Continuity Mission (LDCM) scheduled for December of 2012. Failure of one or both of Landsat-5 or -7 may result in a lack of Landsat data for a period of time until the 2012 launch. Although the potential risk of a component failure increases the longer the sensor\u27s design life is exceeded, the possible gap in Landsat data acquisition is reduced with each passing day and the risk of Landsat imagery being unavailable diminishes for all except a handful of applications that are particularly data demanding. Advances in Landsat data compositing and fusion are providing opportunities to address issues associated with Landsat-7 SLC-off imagery and to mitigate a potential acquisition gap through the integration of imagery from different sensors. The latter will likely also provide short-term, regional solutions to application-specific needs for the continuity of Landsat-like observations. Our goal in this communication is not to minimize the community\u27s concerns regarding a gap in Landsat observations, but rather to clarify how the current situation has evolved and provide an up-to-date understanding of the circumstances, implications, and mitigation options related to a potential gap in the Landsat data record

    Assessing Precision in Conventional Field Measurements of Individual Tree Attributes

    Get PDF
    Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh), and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5%) and 0.5 m (2.9%), respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.Peer reviewe

    Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment

    Get PDF
    Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r 2?= 0.61, df = 1, F?= 14.3, p?= 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r 2?= 0.72, df = 1, F?= 23.09, p?= 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices

    Analysis of Implementation the Evaluation of Guidance and Counseling Program at Senior High Schools of Singkawang

    Full text link
    Focus of this study are (1) describe and analyze the implementation of the guidance and counseling program, (2) find some factors inhibiting the implementation of the guidance and counseling program. This study uses qualitative methods; using interview data collecting technique, tested its validity through triangulation. Subjects in this study are all teachers of guidance and counseling in the Senior High School of Singkawang as many as 10 people as well as principals and supervisors as the informants with the total of 11 people. Results (1) the implementation of evaluation of guidance and counseling program by the teachers still has many weaknesses on each phase of the evaluation, such as not understanding the evaluation models of the guidance and counseling program, how to apply them, and monitoring process that is not done in deeply and in detail, (2) Some factors inhibiting the implementation of the evaluation of guidance and counseling program are lack of knowledge and understanding of the evaluation of guidance and counseling program in the schools, lack of interest in developing professional competencies, and lack of guidance to the teachers in implementing the guidance and counseling evaluation program

    Assessing the Effects of Sample Size on Parametrizing a Taper Curve Equation and the Resultant Stem-Volume Estimates

    Get PDF
    Large and comprehensive datasets, traditionally based on destructive stem analysis or other labor-intensive approaches, are commonly considered as a necessity in developing stem-volume equations. The aim here was to investigate how a decreasing number of sample trees affects parametrizing an existing taper curve equation and resultant stem-volume estimates. Furthermore, the potential of terrestrial laser scanning (TLS) in producing taper curves was examined. A TLS-based taper curve was derived for 246 Scots pines (Pinus sylvestris L.) from southern Finland to parametrize an existing taper curve equation. To assess sensitivity of the parametrization regarding sample size, the number of Scots pines included in the parametrization varied between full census and 1 Scots pine at a time. Root mean square error of stem-volume estimates remained ≤20.9% and the mean absolute difference was relatively constant (≤9.0%) between stem-volume estimates when the sample size included ≥46 Scots pines. Thus, it can be concluded that, with a rather small sample size, a taper curve equation can be re-parametrized for local conditions using point clouds from TLS to produce consistent stem-volume estimates

    Implications of differing input data sources and approaches upon forest carbon stock estimation

    Get PDF
    Site index is an important forest inventory attribute that relates productivity and growth expectation of forests over time. In forest inventory programs, site index is used in conjunction with other forest inventory attributes (i.e., height, age) for the estimation of stand volume. In turn, stand volumes are used to estimate biomass (and biomass components) and enable conversion to carbon. In this research, we explore the implications and consequences of different estimates of site index on carbon stock characterization for a 2,500-ha Douglas-fir-dominated landscape located on Eastern Vancouver Island, British Columbia, Canada. We compared site index estimates from an existing forest inventory to estimates generated from a combination of forest inventory and light detection and ranging (LIDAR)-derived attributes and then examined the resultant differences in biomass estimates generated from a carbon budget model (Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)). Significant differences were found between the original and LIDAR-derived site indices for all species types and for the resulting 5-m site classes (p < 0.001). The LIDAR-derived site class was greater than the original site class for 42{\%} of stands; however, 77{\%} of stands were within +/-1 site class of the original class. Differences in biomass estimates between the model scenarios were significant for both total stand biomass and biomass per hectare (p < 0.001); differences for Douglas-fir-dominated stands (representing 85{\%} of all stands) were not significant (p = 0.288). Overall, the relationship between the two biomass estimates was strong (R(2) = 0.92, p < 0.001), suggesting that in certain circumstances, LIDAR may have a role to play in site index estimation and biomass mapping

    Assessing the Effects of Sample Size on Parametrizing a Taper Curve Equation and the Resultant Stem-Volume Estimates

    Get PDF
    Large and comprehensive datasets, traditionally based on destructive stem analysis or other labor-intensive approaches, are commonly considered as a necessity in developing stem-volume equations. The aim here was to investigate how a decreasing number of sample trees affects parametrizing an existing taper curve equation and resultant stem-volume estimates. Furthermore, the potential of terrestrial laser scanning (TLS) in producing taper curves was examined. A TLS-based taper curve was derived for 246 Scots pines (Pinus sylvestris L.) from southern Finland to parametrize an existing taper curve equation. To assess sensitivity of the parametrization regarding sample size, the number of Scots pines included in the parametrization varied between full census and 1 Scots pine at a time. Root mean square error of stem-volume estimates remained ≤20.9% and the mean absolute difference was relatively constant (≤9.0%) between stem-volume estimates when the sample size included ≥46 Scots pines. Thus, it can be concluded that, with a rather small sample size, a taper curve equation can be re-parametrized for local conditions using point clouds from TLS to produce consistent stem-volume estimates

    Landsat archive holdings for Finland : opportunities for forest monitoring

    Get PDF
    There is growing interest in the use of Landsat data to enable forest monitoring over large areas. Free and open data access combined with high performance computing have enabled new approaches to Landsat data analysis that use the best observation for any given pixel to generate an annual, cloud-free, gap-free, surface reflectance image composite. Finland has a long history of incorporating Landsat data into its National Forest Inventory to produce forest information in the form of thematic maps and small area statistics on a variety of forest attributes. Herein we explore the spatial and temporal characteristics of the Landsat archive in the context of forest monitoring in Finland. The United States Geological Survey Landsat archive holds a total of 30 076 images (1972-2017) for 66 scenes (each 185 km by 185 km in size) representing the terrestrial area of Finland, of which 93.6% were acquired since 1984 with a spatial resolution of 30 m. Approximately 16.3% of the archived images have desired compositing characteristics (acquired within August 1 +/- 30 days,Peer reviewe
    corecore